8,215 research outputs found

    De/remineralization from different commercial dentifrices: a pH-cycling study

    Get PDF
    Abstract no. 85published_or_final_versio

    Effects of different commercial dentifrices on enamel initial lesion progression

    Get PDF
    Abstract no. 1606published_or_final_versio

    Improving Search through A3C Reinforcement Learning based Conversational Agent

    Full text link
    We develop a reinforcement learning based search assistant which can assist users through a set of actions and sequence of interactions to enable them realize their intent. Our approach caters to subjective search where the user is seeking digital assets such as images which is fundamentally different from the tasks which have objective and limited search modalities. Labeled conversational data is generally not available in such search tasks and training the agent through human interactions can be time consuming. We propose a stochastic virtual user which impersonates a real user and can be used to sample user behavior efficiently to train the agent which accelerates the bootstrapping of the agent. We develop A3C algorithm based context preserving architecture which enables the agent to provide contextual assistance to the user. We compare the A3C agent with Q-learning and evaluate its performance on average rewards and state values it obtains with the virtual user in validation episodes. Our experiments show that the agent learns to achieve higher rewards and better states.Comment: 17 pages, 7 figure

    Flow-distributed spikes for Schnakenberg kinetics

    Get PDF
    This is the post-print version of the final published paper. The final publication is available at link.springer.com by following the link below. Copyright @ 2011 Springer-Verlag.We study a system of reaction–diffusion–convection equations which combine a reaction–diffusion system with Schnakenberg kinetics and the convective flow equations. It serves as a simple model for flow-distributed pattern formation. We show how the choice of boundary conditions and the size of the flow influence the positions of the emerging spiky patterns and give conditions when they are shifted to the right or to the left. Further, we analyze the shape and prove the stability of the spikes. This paper is the first providing a rigorous analysis of spiky patterns for reaction-diffusion systems coupled with convective flow. The importance of these results for biological applications, in particular the formation of left–right asymmetry in the mouse, is indicated.RGC of Hong Kon

    A Sarrus-like overconstrained eight-bar linkage and its associated Fulleroid-like platonic deployable mechanisms

    Get PDF
    This paper, for the first time, presents an overconstrained spatial eight-bar linkage and its application to the synthesis of a group of Fulleroid-like deployable platonic mechanisms. Structure of the proposed eight-bar linkage is introduced, and constrain and mobility of the linkage are revealed based on screw theory. Then by integrating the proposed eight-bar linkage into platonic polyhedron bases, synthesis of a group of Fulleroid-like deployable platonic mechanism is carried out; which is demonstrated by the synthesis and construction of a Fulleroid-like deployable tetrahedral mechanism. Further, mobility of the Fulleroid-like deployable platonic mechanisms is formulated via constraint matrices by following Kirchhoff’s circulation law for mechanical networks, and kinematics of the mechanisms is presented with numerical simulations illustrating the intrinsic kinematic properties of the group of Fulleroid-like deployable platonic mechanisms. In addition, a prototype of the Fulleroid-like deployable spherical-shape hexahedral mechanism is fabricated and tested; verifying the mobility and kinematic characteristics of the proposed deployable polyhedral mechanisms. Finally, application of the proposed deployable platonic mechanisms is demonstrated in the development of a transformable quadrotor. This paper hence presents a novel overconstrained spatial eight-bar linkage and a new geometrically intuitive method for synthesising Fulleroid-like regular deployable polyhedral mechanisms that have great potential applications in deployable, reconfigurable and multifunctional robots

    Some triviality results for quasi-Einstein manifolds and Einstein warped products

    Full text link
    In this paper we prove a number of triviality results for Einstein warped products and quasi-Einstein manifolds using different techniques and under assumptions of various nature. In particular we obtain and exploit gradient estimates for solutions of weighted Poisson-type equations and adaptations to the weighted setting of some Liouville-type theorems.Comment: 15 pages, fixed minor mistakes in Section

    PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation

    No full text
    Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator

    Quantum computation by local measurement

    Full text link
    Quantum computation is a novel way of information processing which allows, for certain classes of problems, exponential speedups over classical computation. Various models of quantum computation exist, such as the adiabatic, circuit and measurement-based models. They have been proven equivalent in their computational power, but operate very differently. As such, they may be suitable for realization in different physical systems, and also offer different perspectives on open questions such as the precise origin of the quantum speedup. Here, we give an introduction to the one-way quantum computer, a scheme of measurement-based quantum computation. In this model, the computation is driven by local measurements on a carefully chosen, highly entangled state. We discuss various aspects of this computational scheme, such as the role of entanglement and quantum correlations. We also give examples for ground states of simple Hamiltonians which enable universal quantum computation by local measurements.Comment: 36 pages, single column, 6 figures, not published version (as restricted by the journal), please refer to ARCMP for the final published versio

    Effects of nerve-sparing procedures on surgical margins after robot-assisted radical prostatectomy

    Get PDF
    BACKGROUND: Nerve-sparing (NS) techniques could potentially increase positive surgical margins (PSM) after robot-assisted radical prostatectomy (RARP). Nevertheless, the available studies have revealed ambiguous results among distinct groups. This study purposed to clarify the details of NS techniques to accurately estimate their influence on margin status. METHODS: We studied RARPs performed by one surgeon from 2010 to 2018. Surgical margins were evaluated by the laterality and levels of NS techniques in site-specific prostate lobes. The multivariable analysis evaluated the effects of nerve-sparing procedures, combined with other covariate factors, on margin status. RESULTS: Overall, four hundred nineteen RARPs involving 838 prostate lobes were analyzed. Notably, 181 patients (43.4%) had pT2-stage, and 236 (56.6%) had pT3-stage cancer. The PSM rates for patients who underwent unilateral, bilateral, and non NS procedures were 30.3%, 28.8%, and 50%, respectively (p = 0.233) or in stratification by pT2 (p = 0.584) and pT3 (p = 0.116) stage. The posterolateral PSM rates among site-specific prostate lobes were 10.9%, 22.4%, and 18.9% for complete, partial, and non NS techniques, respectively (p = 0.001). The partial NS group revealed a significant increase in PSM rate compared with the complete NS (OR 2.187, 95% CI 1.19-4.03) and non NS (OR 2.237, 95% CI 1.01-4.93) groups in site-specific prostate lobes. CONCLUSION: Partial NS procedures have a potential risk of increasing the PSM rate than complete and non NS procedures do. Therefore, correct case selection is required before performing partial NS techniques

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks
    corecore